
1 A Model of Financial Markets with Quantitative and Discretionary

Investors

In this section I propose a model of an equilibrium asset market in which quantitative investors

(�quants�) and discretionary investors (�discretionaries�) interact. The model builds on Kacperczyk

et al. (2016). Theirs is a static general equilibrium model with multiple assets subject to a

common aggregate shock and to idiosyncratic shocks. Assets are traded by skilled investors,

unskilled investors, and noise traders. Skilled investors can learn about assets' payo�s, but their

learning capacity is limited. I augment that model along two dimensions: (1) I add a second group

of skilled investors, quants, endowed with an unlimited learning capacity but able to learn only

about idiosyncratic shocks. (2) I assume that private signals contain an unlearnable component

(i.e. residual noise) that is heterogeneous across assets and investor types (i.e. quants or

discretionaries).

1.1 Model

The model has three dates, t = 1, 2, 3. At t = 1, investors allocate their learning capacity. At t = 2,

investors choose their portfolio allocations. At t = 3, prices and returns are realized.

1.1.1 Assets and Risk Factors

There are n risky assets and one riskless asset, with price 1 and payo� r. Of the risky ones, n − 1

are exposed to both idiosyncratic and aggregate risks, while n is a composite asset subject to the

aggregate risk only. At t=3 the normally distributed risky assets' payo�s are:

fi = µi + bizn + zi and fn = µn + zn. (1)

where fi is the payo� from asset i, for i = 1, . . . , n; risk factors are given by z = [z1, . . . , zn]′ ∼

N(0,Σ); zn represents the aggregate shock and zi for i 6= n idiosyncratic shocks. Σ is a diagonal

matrix s.t. Σii = σi ∈ R+; bi is asset i's exposure to the aggregate risk, µi ∈ R is its expected payo�.

Rewriting system 1 in matrix form yields f = µ + Γz. The model is solved in terms of �synthetic�
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payo�s, a�ected by only one risk factor each: f̃ = Γ−1f = Γ−1µ+ z.

The supply of the ith risk factor is x̄i+xi, where xi ∼ N(0, σx) and x̄i is an expected component.

Supply is stochastic for prices not to be fully revealing. The aggregate risk factor is assumed to be

the one in greatest supply since it a�ects all risky assets (x̄n � x̄i ∀i 6= n).

1.1.2 Investors and Learning

There is a unit mass of mean-variance investors with risk aversion ρ, indexed by j ∈ [0, 1] , of whom

a fraction χ ∈ [0, 1] are skilled, the rest being unskilled. Among skilled investors, a fraction θ ∈ [0, 1]

are quantitative and (1− θ) are discretionary. Thus the measures of quants and discretionaries are,

respectively, χθ and χ(1− θ).

Investors receive private signals about risk factors. Signal precision increases with the capacity

for learning. Investor j's private signals vector is sj = [s1j , . . . , snj ]
′, such that:

sij = zi + εij , where : εij ∼ N(0, σij) for σij ∈ [σij ,∞] (2)

An in�nite learning capacity allows reducing signals volatility to their lower-bound σij ; whereas

zero learning capacity leads to an in�nite volatility (σij =∞).

The lower-bounds in signal volatility ensure that no investor, even those with unlimited

learning capacity, can know the future with certainty. Their heterogeneity across assets captures

potential di�erences in information availability. For instance, less information might be available

about younger or smaller �rms, hence a lower signal precision might be attainable. Lower-bounds

also vary by investor type, the rationale being that information available for human consumption

might not be machine-readable and vice-versa. Hence, the maximum precision achievable by

quants or discretionaries might di�er.

Discretionaries (j = d ∈ [0, χ(1−θ)]) have a learning capacity K, which they can allocate freely

across all risk factors; so that the sum of their signals' precision is bounded:

n∑
i=1

σ−1
id = K where σ−1

id ≥ 0 ∀i = 1, . . . n (3)
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Quants (j = q ∈ [0, χθ]) have unlimited learning capacity about idiosyncratic risk factors ∀ i 6= n;

but do not receive a private signal about the aggregate shock σnq =∞.

Unskilled investors (j = u ∈ [0, 1− χ]) have zero learning capacity hence σij =∞ ∀i = 1, . . . n;

which is equivalent to saying that they do not receive any private signal.

All investors learn from prices through the signals vector sp = [s1p, . . . , snp]
′, where:

spi = zi + εip, where εip ∼ N(0, σp). (4)

1.1.3 Recessions

I derive di�erential predictions for expansions and recessions, modeled as periods of higher aggregate

shock volatility, σn.
1.

1.2 Analysis

1.2.1 Optimal Portfolio Choice

In period t = 2, each investor j (j = u, d, q), given initial wealth W0 and having risk

aversion ρ, chooses the optimal portfolio allocation q̃j
∗ to maximize mean-variance utility:

max
q̃j

U2j =
{
ρEj [Wj ]−

ρ

2
Vj [Wj ]

}
s.t. Wj = rW0 + q̃j

′(f̃ − p̃r). (5)

It follows that

q̃j
∗ =

1

ρ
Σ̂j
−1
(
Ej [f̃ ]− p̃r

)
. (6)

Optimal allocation to risky assets decreases with risk aversion ρ, but increases with posterior private

signal precision Σ̂j
−1

and expected payo� Ej [f̃ ]; the last two measures being group dependent.

Investors with more precise signals, allocate more capital to risky assets.

1For empirical evidence in support of this assumption see footnote ??.
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1.2.2 Market Clearing

Given the optimal portfolio choices of the di�erent investors, the next step is to clear the asset

market by equating the aggregate demand to supply such that:

∫
q̃∗j dj = x̄+ x. (7)

The solution to the integral in equation (7) depends on the average learning capacity, across investor

types, toward the di�erent risk factors:

K̄i =

∫
Kij dj =


χθKiq + χ(1− θ)Kid, i = 1, ..., n− 1;

χ(1− θ)Kid, i = n;

(8)

where Kiq =
∫
σ−1
iq ∂q and Kid =

∫
σ−1
id ∂d. I solve for an equilibrium price of the form pr =

(A+B + Cx), where (A,B,C) depend on the model's parameters.

1.2.3 Investors' Learning Choice

At t = 1, all skilled investors choose their optimal learning capacity allocation.

Quants, having unlimited learning capacity, learn all available and machine processable

information about idiosyncratic shocks s.t. σ−1
iq = σ−1

iq and Kiq = σ−1
iq ∀i 6= n.

Discretionaries, having a limited learning capacity, must optimize their allocation. This choice

depends on investors' expectation, at t = 1, of the distribution of excess returns at t = 2. After

some manipulation, their expected utility at t = 1 can be written as:

U1d =
1

2

n∑
i=1

(σ−1
id λi) + constant (9)

where λi, the marginal bene�t of learning about risk factor i, is given by:

λi ≡ σ̄i{1 + [ρ2(σx + x̄i
2) + K̄i]σ̄i}; σ̄i =

∫ (
Σ̂j

)
ii
dj =

(
σ−1
i + K̄i +

K̄i
2

ρ2σx

)−1

. (10)
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According to equation (10), λi increases with expected supply x̄i and prior volatility σi but decreases

with average private information in the market, K̄i (Appendix B). The latter result is due to a

substitution e�ect: when many investors learn about a given shock, the bene�t that each derives

from that knowledge is reduced. Equation (8) shows that K̄i is a function of the share χ of skilled

investors and among those the fraction θ that are quantitative.

The learning problem of discretionaries is given by:

maxK1d...Knd
1
2

∑n
i=1(σ−1

id λi) + constant

s.t.
∑n

i=1 σ
−1
id 6 K,

σ−1
id ≥ σ

−1
id ≥ 0 ∀i = 1, ..., n.

(11)

The solution to this problem consists in allocating all learning capacity to the risk factor i∗ (when

i∗ = argmaxi λi) or to a basket of risk factors l∗ such that λl∗ ∈ IM/l
∗ and λl∗ = argmaxi λi

(Van Nieuwerburgh and Veldkamp (2010)). A basket of risky assets could achieve the same marginal

bene�t λi∗ , due to the substitution e�ect previously illustrated.2

An important di�erence from KVV's approach is that here the average signal precision about

each risk factor (K̄i) also depends on the learning advantage (or disadvantage) of quants (eq. 8) and

on the ratio θ of quants to discretionaries among skilled investors. This point is key for obtaining

the model's main predictions.

1.3 Predictions

1.3.1 Optimal Learning

KVV show that, in recessions, the marginal bene�t of learning about the aggregate shock (λn)

increases with σn and ρ, hence capacity constrained investors focus their attention towards the

aggregate shock. In expansions, when σn is lower, capacity constrained investors shift their attention

towards idiosyncratic shocks, focusing on those with the highest volatility (σi). Similarly to KVV,

my model predicts that discretionaries, being capacity constrained, shift from learning about the

2The solution is obtained through water�lling. Non-symmetric equilibria where each investors might choose a

di�erent attention allocation are possible due to the same substitution e�ect.
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aggregate shock in recessions to learning about idiosyncratic shocks in expansions (Appendix C.1).

Quants, instead, specialize in learning about idiosyncratic shocks. Additionally, my model predicts

that in recessions discretionaries display higher timing ability and lower picking ability than quants.

These predictions derive directly from investors' optimal learning choices.

In expansions two opposing forces are at play. On the one hand, given their overall greater

capacity for learning about idiosyncratic shocks, quants should experience higher picking ability than

discretionaries. This e�ect though is opposed by the cross-asset heterogeneity in signal precision of

quants (σ−1
iq ). If discretionaries were to focus their attention on shocks for which relatively more

information suitable for human consumption was available than for machine consumption, they

could achieve a higher signal precision than quants on those stocks and overall greater picking

ability, given their more concentrated allocations (Prop. 2).

Proposition 1. Discretionaries shift their attention to the aggregate shock in recession; quants

specialize in learning about idiosyncratic shocks. In recessions, discretionaries display higher timing

ability and lower picking ability than quants.

1.3.2 Holdings

Investors optimally hold more of what they know better. This is evident from equation (6), which

shows that the optimal portfolio allocation q̃∗j is proportional to posterior precision Σ̂−1
j . Quants

learn about more shocks, hence have a more precise signal about more of the risky assets; this leads

them to hold more of them.

Proposition 2. Quants optimally hold a greater number of stocks than do discretionaries.

For discretionaries, the incentive to learn about shock i decreases the higher the precision of

quantitative private signals about it (σ−1
iq ). That is because both the average information about

that shock in the market (K̄i) and discretionaries' informational disadvantage relative to quants

increase. To better explain this last concept I de�ne the information gap (Gid) as the di�erence in
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private signal precision about shock i between quants and discretionary investor d:

Gid ≡
(
Kiq − σ−1

id

)
∀i = 1, ..., n− 1,

Kiq = σ−1
iq ∀i = 1, ..., n− 1.

(12)

Gid is positive for most assets, since quants have a greater capacity for learning. It might be

negative when more information is available for human than for machine consumption. Gid is

strictly increasing in the precision of private signals of quants about asset i (σ−1
iq ), as σ−1

id is

weakly decreasing in σ−1
iq . As a result, discretionaries optimally focus their attention on shocks for

which their information gap with respect to quants is smaller (Appendix C.2).

Proposition 3. An increase in the private signal precision of quants (σ−1
iq ) weakly reduces attention

allocation of discretionaries to risk factors with a greater information gap.

1.3.3 Dispersion of Opinion

The dispersion of opinion of a representative quant (discretionary) with respect to other quants

(discretionaries) is given by:

E
[
(q̃q − ¯̃qq) (q̃q − ¯̃qq)

′]
=

1

ρ2

n−1∑
i=1

σ−1
iq (13)

E
[
(q̃d − ¯̃qd) (q̃d − ¯̃qd)

′]
=

1

ρ2
K +

1

ρ2

n∑
i=1

(
σ−1
id −Kid

)2
λi (14)

where ¯̃qj =
∫ [

1
ρ Σ̂j

−1
(
Ej [f̃ ]− p̃r

)
∂j
]
for j ∈ [q, d] (Appendix C.3).

Dispersion of opinion is determined by two e�ects. First, it increases with the total precision

of private signals: the greater the total precision of private signals the more weight is given to

the heterogeneous private signals as opposed to common priors in determining posteriors. Second,

dispersion of opinion increases with the cumulative di�erence in the attention allocated by investors

to each asset with respect to the attention allocated to the same assets by the average investor of

their type. Risk tolerance magni�es both e�ects.

For quants (eq. 13) dispersion of opinion is entirely determined by the �rst e�ect; attention
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allocation is always symmetric among quants as they optimally learn all available and machine

processable information. For discretionaries (eq. 14) both e�ects are at play. The �rst term shows

that dispersion of opinion is an increasing function of total private signal precision K. The second

term shows that the greater the di�erence in signal precision of investor d with respect to other

discretionaries
(
σ−1
id −Kid

)
, the greater the dispersion of opinion. Discretionaries must optimally

allocate their limited learning capacity; due to a substitution e�ect they might choose to learn about

di�erent shocks, increasing dispersion of opinion (Appendix C.3).

Proposition 4. As long as
∑n

i=1

(
σ−1
id −Kid

)2
λi >

∑n−1
i=1 σ

−1
iq −K, dispersion of opinion is greater

among discretionaries than among quants.

1.3.4 Performance

An investor's risk-adjusted performance is measured as his expected excess return with respect to

the market return. The excess return of investor j is given by (Appendix A):

E [(Rj −RM )] = E
[(
q̃∗j − ¯̃q

)′ (
f̃ − p̃r

)]
=

1

ρ

n∑
i=1

[
λi
(
Kij − K̄i

)]
. (15)

Expected excess returns increase with the precision of the private signals of investor j on the risk

factors he chooses to learn about (∀i s.t. Kij > 0) and in proportion to the marginal bene�t λi of

learning about them. They decrease with increases in the average precision of private signals about

asset i across all investors in the market (K̄i).

Discretionary investor d, when learning about the aggregate shock, earns a positive excess return

if:

λn [K − χ(1− θ)Knd] > χθ

n−1∑
i=1

[
λiσ
−1
iq

]
. (16)

where the left-hand-side represents his informational advantage with respect to both unskilled

investors and quants (i.e., his ability to learn about the aggregate shock when its volatility is

high); and the right-hand-side represents his learning disadvantage with respect to quants (i.e., his

overall lower capacity for learning). When, instead, he learns about idiosyncratic shocks,3 his

3Without loss of generality I assume that each discretionary investor d learns about one idiosyncratic shock l.
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expected excess return is positive if:

λl

[
K − χ(1− θ)Kld − χθσ−1

lq

]
> χθ

∑
i 6=(j,n)

[
λiσ
−1
iq

]
. (17)

This second condition is more restrictive for two reasons. First, he allocates the same amount of

total capacity (K) to learning about a shock in much lower supply (x̄n >> x̄l ∀l 6= n). Second,

both investor types learn about the same risk factors, implying a higher average precision of private

signals (K̄l), and a lower marginal bene�t of learning (eq. 21). Moreover, an increase in the prior

volatility of the idiosyncratic shock l, which he chooses to learn about, increases his expected excess

return only if θ is su�ciently low: θ < K−χKld
χḠl

(for Ḡl =
∫
Gld∂d). Whereas when he optimally

allocates all of his attention to learn about the aggregate shock, increases in σn always have a

positive e�ect on his excess return. When he shifts his attention from idiosyncratic to the aggregate

shock, an increase in σn always increases his performance if he held stocks with a low information

gap. Finally, increases in σi, for i 6= l 6= n always reduce his performance. These observations, taken

together with equations (16) and (17), lead to conclude that discretionaries have higher expected

excess returns in recessions.

From the above condition we further observe that, when discretionaries learn about shocks with

a smaller average information gap, an increase in λl increases their excess return for a wider range

of θ values � always rising if Ḡl < 0. Discretionaries tend to allocate their attention towards risk

factors with a smaller information gap (Prop. 3). This also a�ects their expected excess returns,

which always decrease when the private signal precision of quants (σ−1
iq ) rises for shocks that they

pay attention to (Appendix C.4).

Proposition 5. The performance of discretionaries weakly increases with σn (i.e. in recessions),

and when learning about shocks with a low information gap.

Quants do not reallocate attention. Hence, their expected excess returns depends only on

changes in the marginal bene�t of learning about the various shocks and the consequent attention

reallocation by discretionaries.

This could also be a basket of shocks with the same and highest marginal bene�t of learning.
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When discretionaries learn about the aggregate shocks, quants' performance is positive if:

(1− χθ)
n−1∑
i=1

[
λiσ
−1
iq

]
> χ(1− θ)λnK (18)

When discretionaries learn about a basket of shocks l 6= n, with the same and highest marginal

bene�t of learning λ∗l , the performance of quants is positive if:

(1− χθ)
n−1∑
i=1

[
λiσ
−1
iq

]
> χ(1− θ)

∑
l 6=n

λ∗lKld = χ(1− θ)λ∗lK (19)

In comparing the above conditions, two mechanisms are at play: when discretionaries learn about

the aggregate shock, quants are at a learning disadvantage with respect to the shock in greatest

supply (n); making condition 18 more restrictive. When quants and discretionaries learn about

the same shocks, the average private signal precision about those shocks increases, decreasing their

marginal bene�t of learning; making condition 19 more restrictive. A similar reasoning applies when

looking at the e�ect of an increase in the volatility of the aggregate shock σn on the performance

of quants. The direct e�ect is a reduction in performance through an increase in λn. The indirect

e�ect is a weak increase in performance through attention reallocation; i.e. discretionaries reduce

the attention allocated to the basket or shocks l 6= n, increasing its marginal bene�t of learning.

Hence, we cannot unequivocally say whether the performance of quants should increase or decrease

in recessions; but an increase in σn always has a larger positive impact for discretionaries.

Further, the performance of quants always increases with the volatility of shocks that

discretionaries don't learn about (σi for i 6= l 6= n); i.e. with increases in the marginal bene�t of

learning of shocks for which they have a learning advantage. Quantitative performance increases

with the volatility of the shocks that discretionaries also learn about (σl) only when the

information gap is su�ciently high. The performance of quants, though, is not always increasing in

the information gap. The information gap strictly increases with the precision of private signals of

quants σ−1
iq . This has two e�ects on their performance: it directly increases excess returns thanks

to their greater informativeness in choosing portfolio allocations; it indirectly decreases excess
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returns as the higher average precision of private signals about those shocks reduces their marginal

bene�t of learning. An increase in σ−1
iq only increases the performance of quants if their total share

in the market (χθ) is su�ciently low (eq. 25).

Finally, quantitative performance worsens as the share of quants among skilled investors (θ)

increases. The negative e�ect of an increase in θ on excess returns is greater when the total share of

quants (χθ) is high and their private signal precision (σ−1
iq ) rises. For a high enough χθ an increase

in σ−1
iq causes excess returns to decrease faster as θ increases (eq. 27). This is particularly relevant

as quants have unconstrained learning capacity and they all learn about the same shocks. Hence, a

small increase in θ can greatly impact λis (Appendix C.5).

Proposition 6. When σn rises (i.e. in recessions), quants experience a smaller increase in

performance than discretionaries. Their performance always decreases as the share of skilled

investors who are quantitative rises; particularly when their overall signal precision and the total

share of quants in the market is high.
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APPENDIX

A Model Solution

The key steps of the model's solution are summarized below. For more details see Admati (1985)

and Kacperczyk et al. (2016). The key di�erence in my model is that the obtained solution is

a function of the fraction of skilled investors who are quantitative and of their di�erential signal

precision. This is key in deriving the model's predictions.

A.1 Market-clearing

The model is solved in terms of synthetic assets, only a�ected by one risk-factor each. Solving for

the market clearing condition we obtain:

A = Γ−1µ− ρΣ̄x̄; B = I − Σ̄Σ−1; C = −ρΣ̄

(
I − 1

ρ2σx
Σ̄−1η

)
,

p̃r = Γ−1µ+ Σ̄

[(
Σ̄−1 − Σ−1

)
z − ρ(x̄− x)− 1

ρ2σx
Σ̄−1η x

]

Where: Σ̄−1 = Σ−1 + Σ−1p + Σ̄−1η ; Σ−1P =
(
σxB

−1CC ′B−1
′
)−1

= 1
ρ2σx

Σ̄−1
′

η Σ̄−1η

A.2 Discretionary learning choice

Discretionaries solve the below problem to determine their optimal learning:


U1d = E1

[
ρEd [Wd]− ρ2

2 Vd [Wd]
]

Wd = rW0 + q̃∗
′

d

(
f̃ − p̃r

)
q̃d
∗ = 1

ρ Σ̂d
−1 (

Ed[f̃ ]− p̃r
)

The solution is obtained by: (1) Substituting q̃d
∗ into Wd. (2) Computing Ed

[
Wd|Êd

[
f̃
]
, Σ̂d

]
and

Vd

[
Wd|Êd

[
f̃
]
, Σ̂d

]
. (3) Substituting the derived moments into the equation for U1d.
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A.3 Expected excess returns

The expected excess return is obtained by: (1) solving for (f̃ − p̃r). (2) solving for (q̃j − ˜̄q). (3)

substituting them into: (qj − q̄)′(f − pr) = (qj − q̄)′Γ−1(Γf − Γpr) = (q̃j − ˜̄q)′(f̃ − p̃r). (4) taking the

expectation: E[(q̃j − ˜̄q)′(f̃ − p̃r)] = ρTr(x̄′Σ̄∆Σ̄x̄) + 1
ρTr(∆V ) = 1

ρ

∑n
i=1

[
λi
(
Kij − K̄i

)]
.

B Comparative Statics

Derivations below are simpli�ed using: (λi − σ̄i) = [ρ2(σx + x̄i
2) + K̄i]σ̄

2
i ≡ γiσ̄2

i > 0 (eq. 10).

The sensitivity of the marginal bene�t of learning about risk factor i with respect to its expected

supply is positive and is given by:

∂λi
∂x̄2i

=
∂

∂x̄2i

[
σ̄i + σ̄i

2ρ2σx + σ̄i
2ρ2σxx̄

2
i + σ̄i

2K̄i

]
= σ̄i

2ρ2 > 0 (20)

The sensitivity of the marginal bene�t of learning about risk factor i with respect to the average

precision of private signals about i (K̄i) is negative and is given by:

∂λi
∂K̄i

= −2

(
K̄i

ρ2σx
(2λi − σ̄i) + λi − σ̄i

)
< 0 (21)

The sensitivity of the marginal bene�t of learning about risk factor i with respect to its volatility

is positive and is given by:
∂λi
∂σi

=

(
σ̄i
σi

)2

+ 2

(
λi − σ̄i
σi

)
> 0 (22)

This positive e�ect is decreasing (resp. increasing) in the share of skilled investors that are

quantitative θ for i = 1, ..., n − 1, for shocks with a positive (resp. negative) average information

gap (Ḡid = (σ−1
iq − K̄id)). It is always increasing for i = n, as σ−1

nq = 0:

∂λi
∂σi∂θ

= −2χ
(
σ−1iq − K̄id

){
3 (λi − σ̄i)

(
2K̄i

ρ2σx
+ 1

)
+ σ̄i

(
2K̄i

ρ2σx

)}(
σ̄i
σi

)2

(23)

The sensitivity of the marginal bene�t of learning about risk factor i with respect to the average

precision of private signals of quants (σ−1
iq ) is negative and given by:

∂λi

∂σ−1iq
= −2χθσ̄i

(
K̄i

ρ2σx
(2λi − σ̄i) + λi − σ̄i

)
< 0 (24)
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The sensitivity of the total bene�t of learning about risk factor i for quants with respect to the

average precision of their private signals (σ−1
iq ) is given by:

∂λiσ
−1
iq

∂σ−1iq
= λi − 2χθσ̄i

(
K̄i

ρ2σx
(2λi − σ̄i) + λi − σ̄i

)
σ−1iq (25)

which is positive i�: χθ < λi

2σ̄i

(
K̄i
ρ2σx

(2λi−σ̄i)+λi−σ̄i
)
σ−1
iq

.

The sensitivity of the marginal bene�t of learning about risk factor i with respect to the share of

skilled investors using quantitative strategies (θ) is given by:

∂λi
∂θ

= −2χ
(
σ−1iq − K̄id

)
σ̄i

(
K̄i

ρ2σx
(2λi − σ̄i) + λi − σ̄i

)
(26)

which is negative ∀i 6= n for which the average information gap
(
σ−1iq − K̄id

)
is positive; it is positive

otherwise (i.e. for i = n or for i 6= n and
(
σ−1iq −Kid

)
< 0). The partial derivative of ∂λi∂θ with respect

to σ−1
iq is equal to 0 for i = n (since σ−1

iq = 0), it is otherwise quadratic with respect to the total

share of quants (χθ) such that:

∂λi

∂θ∂σ−1iq
= a

(
σ−1iq − K̄id

)
χ2θ2 + b

(
σ−1iq − K̄id

)
χθ + c

a = 2χσ̄2
i

1

ρ2σx

(
σ̄i + 2σ̄2

i γi
)
> 0

b = 2χσ̄2
i

(
2K̄i

ρ2σx
+ 1

)[
2K̄i

ρ2σx

(
1 + σ̄2

i γi + 2σ̄iγi
)

+ 2σ̄iγi + σ̄2
i γi − σ̄i

]
> 0

c = −2χσ̄2
i

[(
2K̄i

ρ2σx
+ 1

)
(σ̄iγi + 1) +

K̄i

ρ2σx
+ 1

]
< 0

(27)

which is always negative for a negative average information gap � i.e. an increase in σ−1
iq determines

a slower decrease in λi corresponding to an increase in θ. When the average information gap is

positive the e�ect depends on the level of χθ ∈ [0, 1]: for (χθ = 0) it is negative, for (χθ = 1) it is

positive. Hence there exists a (χθ)∗ above which an increase in σ−1
iq determines a faster decrease in

λi corresponding to an increase in θ.
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C Proofs

C.1 Proposition 1

Constrained discretionaries, adapt their learning depending on changes in the marginal bene�t of

learning about each shock (λi), which increases with shock i's volatility, σi (eq. 22) and with its

expected supply, x̄2
i (eq. 20). Kacperczyk et al. (2016), show through water�lling that increases in

σi weakly increase the attention allocated to shock i by capacity constrained investors (attention

reallocation is unchanged when no attention or all attention was already allocated to shock i prior

to the increase in σi). They further show that this e�ect is magni�ed for the aggregate shock in

recessions when both σi and risk-aversion ρ increase: increases in ρ increase the marginal bene�t of

learning about assets in greater supply, the aggregate shock is in greatest supply. In my model this

result in unchanged. Indeed, theirs is a special case of my model, when the share of quants (θ) is

zero. Increases in the θ further increase the bene�t of learning about the aggregate shock when σn

increases (eq. 23). Hence, in recessions, discretionaries in my model behave like all skilled investors

in KVV and focus on learning about the aggregate shock. Quants, instead, not being capacity

constrained, optimally learn all available and machine processable information about idiosyncratic

shocks, while they don't acquire private signals about the aggregate shock. Hence, their attention

allocation is not a�ected by increases in σn or ρ.

C.2 Proposition 3

An increase in private signal precision of quants about shock l (σ−1
lq ) decreases the marginal bene�t

of learning about it (eq. 24). An increase in the share of quants (θ) decrease the marginal bene�t

of learning about shocks with higher σ−1
lq (eq. 26). In order to verify how this a�ects the attention

allocated by discretionary investor d to shock l, we need to consider how attention was allocated

before the increase. CASE (1): If before the increase in σ−1
lq no attention was allocated to shock

l no attention reallocation happens: an increase in σ−1
lq reduces the marginal bene�t of learning

about shock l. An increase in θ also reduces the marginal bene�t of learning about shock l if this

has a positive information gap. If the information gap is negative, an increase in θ increases λl
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but, being λl continuous in θ, a marginal change in θ cannot change the discrete ranking of λs.

CASE (2): If before the increase in σ−1
lq or in θ all attention was allocated to λl, then no attention

reallocation happens: an increase in σ−1
lq always decrease λl; an increase in θ decreases λl when

the information gap is positive; but, being λl continuous in σ
−1
lq and θ, a marginal increase in σ−1

lq

or θ cannot change the discrete ranking of λis. For a negative information gap, an increases in

θ increase λl further, so there is no incentive to reallocate attention. CASE (3): If before the

increase in σ−1
lq or in θ, l was within the basket of assets among which attention was allocated,

there is attention reallocation. The new equilibrium is obtained by water�lling (Cover and Thomas

(1991); Kacperczyk et al. (2016)). Case 3a: increases in σ−1
lq decrease λl, decreasing the attention

allocated to shock l. This, in turn, increases the incentive to learn about it, due to substitution

e�ects ( ∂λi
∂K̄l

< 0; eq. 21). Through water�lling, I reallocate attention among shocks in the basket

until either no attention is allocated to shock l or the marginal bene�t of learning about all shocks

is equalized. I construct a new equilibrium. Consider the set I s.t. λl′ = argmaxλi ∀l
′ ∈ I. Then

an increase in σ−1
l′′q

for l
′′ ∈ I leads to a decrease in λl′′ . To restore the equilibrium I reallocate

attention from l
′′
to l

′
, ∀l′ ∈ I until λl′ = λl′′ ∀l

′
, l
′′ ∈ I. In the new equilibrium both λl′ and σ

−1
dl′′

are smaller. Case 3b: for Gl > 0 (resp.Gl < 0), an increase in θ decreases (resp. increases) λl, this

decreases (resp. increases) the attention allocated to shock l (σ−1
dl ). This, in turn, increases (resp.

decreases) the incentive to learn about shock l, due to substitution e�ects. Through water�lling, I

reallocate attention among the shocks in the basket until either no (resp. all) attention is allocated

to shock l or the marginal bene�t of learning about all shocks is equalized. An increase in θ has

a negative (resp. positive) e�ect on all shocks in the basket; ∂λi∂θ , though, is strictly decreasing in

Gl. This implies that an increase in θ will have a larger e�ect in decreasing (resp. increasing) the

marginal bene�t of learning about those shocks with a greater (resp. smaller) Gl. Therefore, there

exists G∗l s.t.
∂λl
∂θ <

∂λ
′
l

∂θ ∀l
′
(resp. ∂λl

∂θ >
∂λ
′
l

∂θ ∀l
′
) if Gl < G∗l ; so attention is shifted to those shocks

in the basket with a smaller information gap. To summarize, if investor d was allocating attention

to shock l, after an increase in σ−1
lq he decreases attention to it. Hence, an increase in σ−1

lq weakly

decreases σ−1
id and strictly increases Gld (eq: 12). Finally, an increase in θ shifts attention to shocks

with a lower Gld. Note that, in the new equilibrium, the attention allocated to each shock in basket
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l by the di�erent discretionary investors might di�er. That is due to the same substitution e�ect.

The optimal marginal bene�t of learning λ∗l will be higher the lower the commonality in attention

allocation among discretionaries.

C.3 Proposition 4

Let us de�ne the risk factor portfolio of the average investor as:

∫
q̃∗j dj =

1

ρ

∫
Σ̂j
−1 (

Ej [f̃ ]− p̃r
)
∂j =

1

ρ

∫ [
Σ̂j
−1 (

Γ
′
µ+ Ej [z]

)]
dj − Σ̄−1j p̃r

=
1

ρ

{∫ [
Σ̂j
−1
Ej [z]

]
dj + Σ̄−1

(
Γ

′
µ− p̃r

)}
=

1

ρ

{∫ [
Σ̂j
−1

Σ̂j
(
Σ−1ηj ηj + Σ−1p ηp

)]
dj + Σ̄−1j

(
Γ

′
µ− p̃r

)}
∫
q̃∗j ∂j =

1

ρ

[
Σ−1ηj z + Σ−1p ηp + Σ̄−1j

(
Γ

′
µ− p̃r

)]
(28)

Then, the risk factor portfolios for the average quant and discretionary are:

¯̃qq =
1

ρ

[
Σ−1ηq z − Σ−1p ηp − Σ̂−1q

(
Γ

′
µ− p̃r

)]
; ¯̃qd =

1

ρ

[
Σ̄−1ηd z − Σ−1p ηp − Σ̄−1d

(
Γ

′
µ− p̃r

)]
(29)

where Σ̄−1d = Σ−1 + Σ−1p +
∫

Σ−1ηd ∂d ; Σ̄−1q = Σ−1 + Σ−1p +
∫

Σ−1ηq ∂q = Σ−1 + Σ−1p + Σ−1ηq = Σ̂−1q .

The last equality indicates that quants optimally drive the volatility of their private signals to

their lower-bounds. Then, the di�erences between the risky portfolio of a quantitative or

discretionary investor and that of the average investor of the same type are:

(
q̃∗q − ¯̃qq

)
=

1

ρ

[
Σ̂q
−1 (

Eq[f̃ ]− p̃r
)
− Σ−1ηq z + Σ−1p ηp + Σ̂−1q

(
Γ

′
µ− p̃r

)]
=

1

ρ
Σ−1ηq εq (30)

(q̃∗d − ¯̃qd) =
1

ρ

[
Σ̂d
−1 (

Ed[f̃ ]− p̃r
)
− Σ̄−1ηd z + Σ−1p ηp + Σ̄−1d

(
Γ

′
µ− p̃r

)]
=

=
1

ρ

[(
Σ−1ηd − Σ̄−1ηd

)(
f̃ − p̃r

)
+ Σ−1ηd εd

] (31)

where: Σ̂j
−1
(
Ej [f̃ ]− p̃r

)
= Σ̂j

−1
(

Γ
′
µ+ Σ̂j

(
Σ−1
ηj ηj + Σ−1

p ηp

)
− p̃r

)
.

Eq. 31 contains one more term than eq. 30, as discretionaries don't all necessarily have the

same precision of private signals. Indeed, in allocating their limited capacity, they might optimally

choose to learn about di�erent shocks, to limit the average precision of private signals about any

given shock.
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Finally, dispersion of opinion is de�ned as the expected square di�erence between the risky

portfolio of an investor and that of the average investor of his type:

E
[(
q̃∗q − ¯̃qq

) (
q̃∗q − ¯̃qq

)′]
=

1

ρ2

n−1∑
i=1

σ−1iq (32)

E
[
(q̃∗d − ¯̃qd) (q̃∗d − ¯̃qd)

′]
=

1

ρ2
E

[
n∑
i=1

[(
σ−1id −Kid

) (
f̃ − p̃r

)
+ σ−1id εid

]2]
=

=
1

ρ2

[
n∑
i=1

(
σ−1id −Kid

)2
λi

]
+

1

ρ2
K

(33)

Dispersion of opinion is greater among discretionaries if the portfolio dispersion among

discretionaries more than compensates for their capacity disadvantage with respect to quants:∑n
i=1

(
σ−1
id −Kid

)2
λi >

∑n−1
i=1 σ

−1
iq −K.

C.4 Proposition 5

The expected excess return of discretionaries is given by:

E[RD −RM ] =
1

ρ

∑
l

λl

[
σ−1ld − χ(1− θ)Kld − σ−1lq χθ

]
+

1

ρ
λn
[
σ−1nd − χ(1− θ)Knd

]
− 1

ρ
χθ

n−1∑
i 6=l

λiσ
−1
iq

l is a basket of idiosyncratic shocks that discretionaries might pay attention to.

Increases in σ
i
′ for i

′ ∈ [i, l, n]: An increase in σi′ directly lowers λi′ . The overall e�ect on

performance depends on whether the increase causes any attention reallocation.

σn rises: There are three possible scenarios. CASES (1) and (2): If discretionary investor d

did not pay attention to the aggregate shock or if he allocated all his attention to it prior to the

increase in σn, no attention reallocation happens (sec. C.1). When all of d's attention was allocated

to the aggregate shock, his expected excess return strictly increases due to an increase in λn, it is

otherwise unchanged. CASE (3): Discretionary investor d allocated some attention to the aggregate

shock as part of a basket of shocks prior to the increase in σn. An increase in λn either causes all

attention to be shifted away from the other shocks in the basket and towards the aggregate shock,

or it causes some attention to be reallocated to the aggregate shock until the marginal bene�t

of learning for all shocks is equalized. In both cases the attention paid to the aggregate shock,
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Knd, and its marginal bene�t of learning, λn, increase (prop 1). The shift of attention away from

other shocks in the basket, though, raises their marginal bene�t of learning (λl). This decreases

performance by increasing the overall informational advantage of quants. Case (3a): The net e�ect

on performance is always positive when, after the increase, discretionaries still learn about the same

basket of shocks. In that case the bene�t of learning about all shocks in the basket (λAl ) is strictly

higher than the marginal bene�t for those same shocks before the increase (λBl ), while the learning

capacity of quants and the marginal bene�t of learning about other shocks is unchanged. A su�cient

condition for performance to be positive is:

λAl

[
(σ−1
ld )A − χ(1− θ)KA

ld − σ−1
lq χθ + (σ−1

nd )A − χ(1− θ)KA
nd

]
>

λBl

[
(σ−1
ld )B − χ(1− θ)KB

ld − σ−1
lq χθ + (σ−1

nd )B − χ(1− θ)KB
nd

] (34)

This is always veri�ed since λAl > λBl and from equation 3 we know that:[
(σ−1
ld )A + (σ−1

nd )A
]

=
[
(σ−1
ld )B + (σ−1

nd )B
]

= K and
[
KA
ld +KA

nd

]
=
[
KB
ld +KB

nd

]
= K.

Case 3b: When all attention is shifted to the aggregate shock, λAn > λAl > λBl = λBn = λB. Here a

su�cient condition for the expected excess return to be positive is:

(λAn − λB)K [1− χ(1− θ)] > χθ(λAl − λB)σ−1
lq ; (35)

always satis�ed if χ < K
σ−1
lq

(λAn−λB)

(λAl −λB)
. Discretionaries learn about shocks with low information gap, Gl

(prop. 3). The smaller σ−1
lq , the higher the maximum χ for which the condition is satis�ed (always

satis�ed for σ−1
lq −K < 0). So, as long as discretionaries learn about low Gl shocks, an increase in

σn weakly increases their expected excess return.

σi 6=n6=j rises: An increase in the volatility of shocks that discretionary investor d does not learn

about strictly decreases his expected excess return. That is because a marginal change in σi cannot

change the discrete ranking of λs, hence no attention is reallocated; while the competitive advantage

of quants with respect to shock i increases.

σl rises: When discretionary investor d optimally pays attention to shock (or a basket of shocks)

l, an increase in its volatility σl has a positive impact on expected excess return if K−χ(1−θ)Kld−

19



σ−1
lq χθ > 0 or equivalently if: θ < K−χKld

χḠl
. The smaller Ḡl, the higher the maximum θ for which

the condition is satis�ed (always satis�ed for Ḡl < 0).

Increases in σ−1

i
′
q
: An increase in the average signal precision of quants about shock i

′
weakly

decreases the attention allocated to it and its marginal bene�t, λ
′
i (prop. 3). Three cases need to

be considered. CASE (1): If discretionary investor d did not pay attention to shock i
′
prior to

an increase in σ−1
i′q

(i
′

= i), no attention is reallocated (sec. C.2); while the total informational

advantage of quants might increase or decrease depending on their total share in the market, χθ

(eq. 25). Consequently, d's expected excess return might decrease (low χθ) or increase (high χθ).

CASE (2): If discretionary investor d placed all his attention to asset i
′
prior to an increase in σ−1

i′q
,

no attention is reallocated (sec. C.2) and an increase in σ−1
lq strictly decreases his expected excess

return:
∂E[RD −RM ]

∂σ−1lq
= −1

ρ
χθ

[
λl + 2σ̄l

(
K̄l

ρ2σx
(2λi − σ̄i) + λl − σ̄l

)] (
σ−1ld − K̄l

)
< 0 (36)

CASE (3): If discretionary investor d paid attention to shock l
′
prior to the increase in σ−1

l′q
as part

of a basket of shocks, attention is reallocated until either shock l
′
is allocated no attention or some

of the attention previously allocated to it is diverted to other shocks in the basket (sec. C.2). This

always decreases the optimal marginal bene�t of learning. Case (3a): When the new basket still

contains shock l, the expected excess return of investor d strictly decreases. An increase in σ−1
l′q

negatively impacts the portion of portfolio directly involving shock l
′
(eq. 36), while also lowering

the marginal bene�t of learning of the other shocks remaining in the basket. Case (3b): When the

new basket does not contain shock l
′
, two e�ects are at play: �rst, the lower marginal bene�t of

learning for the shocks remaining in the basket lowers expected excess return; second, the increase in

σ−1
l′q

might increase or decrease the total bene�t of learning of quants, hence decreasing or increasing

the expected return of investor d (eq. 25). The net e�ect depends on the total share of quants in

the market (χθ). In this scenario χθ would have to be higher than in CASE 1 for the performance

of investor d to increase; i.e. the decrease in total bene�t of learning of quants would have to more

than compensate for the decrease in d's total bene�t of learning, due to the reduction in optimal λ.

To summarize, an increase in σ−1
i′q

for shocks that d pays attention to always decreases his expected

excess return. An increase in σ−1
i′q

for shocks that d does not pay attention to (or drops from his

attention basket) might increase or decrease his expected excess return, depending on χθ.
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Increases in θ: An increase in θ decreases (resp. increases) the marginal bene�t of learning of

shocks with a positive (resp. negative) information gap (eq. 26), and it increases the attention

allocated by discretionaries to shocks with a lower information gap (sec. C.2). Hence, when

discretionaries pay full attention to the aggregate shock, an increase in θ strictly increases their

performance: it decrease the marginal bene�t of learning of all idiosyncratic shocks (λi),

decreasing the informational advantage of quants; and it increases the marginal bene�t of learning

about the aggregate shock (λn), increasing the informational advantage of discretionaries. When

they pay attention to a basket of shocks which includes the aggregate shock, an increase in θ

determines a shift of attention towards the aggregate shock (having it the lowest information gap;

σ−1
nq = 0), this strictly increases their performance. When they pay attention only to idiosyncratic

shocks, an increase in θ strictly increases their performance if these shocks have a negative

information gap. If they have a positive information gap, all λs decrease, decreasing both the

informational advantage of quants and the total bene�t of learning of discretionaries. The net

e�ect depends on the share of quants in the market (χθ) and on the magnitude of the information

gap.

C.5 Proposition 6

The expected excess return of quants is given by:

E[RQ −RM ] =
1

ρ

n−1∑
i 6=l

[
λi
(
σ−1iq (1− χθ)

)]
+

1

ρ

∑
l

λl

(
σ−1lq (1− χθ)−Kldχ(1− θ)

)
− 1

ρ
λnKnd

l is a basket of idiosyncratic shocks that discretionaries might pay attention to.

Increases in σ
i
′ for i ∈ [i, l, n]: CASE (1): When discretionaries allocate no attention

to the aggregate shock, increases in σn or σi 6=l do not lead to attention reallocation (sec. C.4).

Hence, increases in σn have no e�ect on the performance of quants, while increases in σi for i 6= l

strictly increase it (∂λi∂σi
> 0;

∂E[RQ−RM ]
∂σi

> 0). Increases in σl′ for l
′ ∈ l, increase λl′ (

∂λl
∂σl

> 0) as

discretionaries reallocate attention towards shock l
′
, leading to a higher optimal marginal bene�t of

learning about shocks in l. This has a positive impact on the performance of quants if σ−1
l′q

(1−χθ)−

Kl′dχ(1−θ) > 0, which implies: θ < [(σl′q−χKl′d)/(χσl′q−χKl′d)]; this is always veri�ed for a positive
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information gap (rhs > 1; θ ∈ [0, 1]); otherwise, it is veri�ed only if: Kl′d > σ−1
l′q

> χKl′d. CASE (2):

When discretionaries allocate all attention to the aggregate shock, an increase in σi for i 6= n 6= l or

in σn no attention is reallocated (sec. C.4). Hence, increases in σi strictly increase the performance

of quants (∂λi∂σi
> 0;

∂E[RQ−RM ]
∂σi

> 0), while increases in σn decrease it (∂λn∂σn
> 0;

∂E[RQ−RM ]
∂σn

< 0).

CASE (3): discretionaries pay attention to a basket of shocks including both the aggregate and

idiosyncratic shocks. Case (3a): An increase in the volatility of one of the idiosyncratic shocks in

the basket increases the performance of quants, as long as the information gap is su�ciently high

(see CASE 1). Case (3b): An increase in the volatility of the aggregate shock, determines a shift of

attention to it and away from other shocks in the basket and a net increase in their optimal marginal

bene�t of learning (sec. C.4). Here we need to consider two cases. (a) When discretionaries still

learn about all shocks in the basket, an increase in λn strictly increases their performance. To prove

this, consider λB to be the optimal marginal bene�t of learning of all shocks in the basket before the

increase in σn, and λ
A to be the, strictly greater, optimal marginal bene�t after. Without loss of

generality assume that discretionaries split their attention between the aggregate shock n and one

idiosyncratic shock l. Let's de�ne KB
ld and KB

nd to be the average attention paid by discretionaries

to shocks l and n respectively before the increase, and KA
ld and KB

nd to be their average attention

after. Finally, recall that discretionaries always allocate the same total capacity (K) to all shocks

in the basket, hence KB
ld + KB

nd = KA
ld + KA

nd = K. Then, the positive impact on performance

due to the decreased attention to shock l (−1
ρχ(1 − θ)(λA − λB)(KA

ld − KB
ld) > 0) is perfectly

compensated by the negative impact on performance due to the increased attention to shock n

(−1
ρχ(1 − θ)(λA − λB)(KA

nd −KB
nd) < 0). Finally, the strictly higher marginal bene�t of learning

about shock l positively impacts the total bene�t of learning of quants (1
ρ(1−χθ)(λA−λB)σ−1

lq > 0),

increasing their performance. (b) When, following an increase in σn discretionaries shift all attention

to the aggregate shock, three e�ects are at play. First, the increases in λn and Knd decrease the

performance of quants by increasing their informational disadvantage. Second, the lower average

signal precision about the shocks dropped from consideration increases their marginal bene�t of

learning, hence increasing the total bene�t of learning of quants and their performance. Finally, an

increase in the information gap of the shocks l dropped from consideration increases performance
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of quants (before: Kld > 0, hence Ḡl = σ−1
l′q
−Kld < σ−1

lq ; after Kld = 0, hence Ḡl = σ−1
l′q
). The net

e�ect depends on the share of quants in the market (χθ) and on their signal precision (σ−1
iq ).

Increases in θ: An increase in θ strictly decreases the performance of quants when

discretionaries are paying full attention to the aggregate shock: it increases the marginal bene�t of

learning about the aggregate shock λn, increasing the informational advantage of discretionaries; it

decreases all other λis (they would all have a positive information gap), decreasing the bene�t of

learning of quants. When discretionaries learn about idiosyncratic shocks with a positive

information gap, an increase in θ strictly decreases the performance of quants: it decreases the

marginal bene�t of learning about all shocks (λi). When discretionaries learn about negative

information gap idiosyncratic shocks, two e�ects are at play. First, the marginal bene�t of

learning about the shocks ignored by discretionaries (λi) decreases, decreasing the performance of

quants. Second, the marginal bene�t of the shocks discretionaries pay attention to (λl) increases;

this might have a positive impact on the performance of quants, if the gap is not too negative and

the total share of skilled investors (χ) is not too high. The net e�ect, though, is negative as, by

de�nition, these are the shocks to which quants pay the least attention (lowest σ−1
lq ), hence the

negative e�ect would overweight the potential positive impact. Finally, for a high enough share of

quants (χθ), increases in σ−1
iq exacerbate the negative impact of increase in θ on λi, determining a

faster drop in the marginal bene�t of learning about those shocks (eq. 27).
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